

Oficina: Eficiência Energética e Combate às Mudanças Climáticas

Os impactos da modernização no Sistema de Climatização dos prédios Anexo I e Anexo II – TRT7

Sistemas de Climatização

Principais tipos de Sistema de Climatização em edifícios comerciais

- SELF CONTAINED;
- CHILLER;
- Torre de Arrefecimento;
- VRF

Sistema Self-Contained

VANTAGENS

Instalação simplificada

Equipamento compacto e autônomo

Baixa Manutenção

DESVANTAGENS

Menor eficiência energética

Ruído elevado

Controle de temperatura mais

complexo (por zona)

Sistema Chiller

VANTAGENS

- Indicado para grandes edificações
- Flexibilidade no projeto
- Bom desempenho em longas distâncias

Ex.: Shoppings, Hospitais, etc...

DESVANTAGENS

- Alto investimento inicial
- Consumo significativo de energia
- Controle de temperatura complexo (por zona)

Torre de arrefecimento com

condensação a água

VANTAGENS

Maior eficiência térmica

Menor consumo de energia elétrica em comparação ao CHILLER e SELF

DESVANTAGENS

Consumo de água elevado

Necessidade de tratamento da água

Manutenção frequente para evitar incrustações

Necessidade de tratamento químico na água.

Sistema VRF

Fluxo de Refrigerante Variável

VANTAGENS

- Alta eficiência energética
- Controle variável da vazão refrigerante por inversores
- Controle individual por ambiente
- Operação silenciosa.

DESVANTAGENS

- Custo de instalação elevado
- Manutenção especializada

Conceitos

Os **gases refrigerantes** são substâncias fundamentais nos sistemas de climatização (como splits, VRFs, chillers e centrais de ar).

Realizam a troca térmica responsável pelo resfriamento dos ambientes.

Muitos desses gases têm impactos ambientais relevantes, especialmente no que se refere ao aquecimento global e à destruição da camada de ozônio.

Conceitos

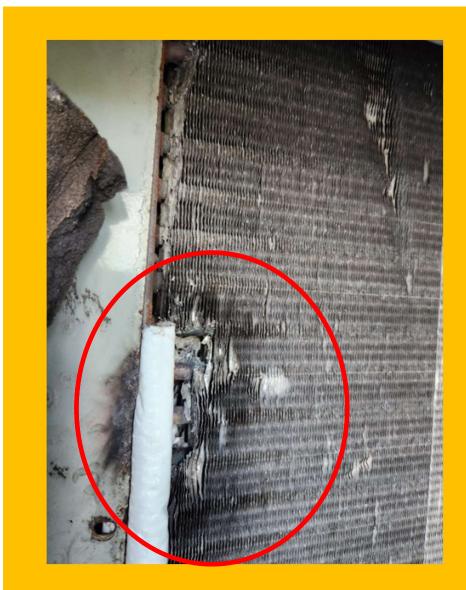
GWP (Global Warming Potential)

Definição: Quanto o gás contribui para o aquecimento global em comparação ao CO₂ (cujo GWP é 1). **Quanto maior, pior.**

ODP (Ozone Depletion Potential):

Definição: Capacidade do gás de destruir a camada de ozônio. **Quanto menor, melhor.**

Tendências Ambientais


- Proibição progressiva de gases com ODP e GWP altos (como o R-22) por protocolos internacionais, como o Protocolo de Montreal.
- Migração para gases mais ecológicos, como R-32, R-290 e HFOs.
- Eficiência energética e controle de vazamentos são essenciais para reduzir o impacto ambiental total dos sistemas de climatização.

Gases Refrigerantes Impactos Ambientais

Ponto de vazamento de gás R22 em Sistema Tipo SELF Contained – Anexo I

Com a modernização do sistema, foi possível a **redução significativa dos vazamentos de gases** refrigerantes, **nocivos ao meio ambiente**.

Impactos Ambientais

R-22

HCFC

↑GWP/ ↑ODP

Equipamentos antigos

R-410A

Mistura de HFCs

↑ GWP / ODP: 0

Amplamente utilizado

R-32

HFC

↓ GWP / ODP: 0

Tendência atual

Sistemas de Climatização – TRT7Panorama Geral

Edifício	Equipamento Original	Idade	Equipamento Atual	Idade 🗠
Anexo I	SELF CONTAINED (Gás R22)	37 anos	VRF (410A)	01 ano
Anexo II	CHILLER (Gás R22)	28 anos	VRF (410A)	01 ano
Ed. Manoel Arízio	SELF CONTAINED (Gás R22)	28 anos	VRF (410A)	07 anos
Ed. Dom Helder	Torre Arrefecimento (Gás R22)	17 anos	-	
Fórum do Cariri	-	-	VRF (410A)	10 anos
Varas do Interior	SPLITS Convencionais (Gás R22 / R410A)	-	SPLITS Inverter (R32)	-

Sistemas de Climatização – TRT 7

Histórico

Prédio	Sistema	Idade	Consumo Energia	Controle Temperatura	Gás
Anexo I	SELF CONTAINED	37 anos	Muito Alto	Por Andar	R22
Anexo II	CHILLER	28 anos	Alto	Por Prédio	R22

Outubro / 2020 - Emissão da Ordem de Serviço para **elaboração de estudo de solução**;

Nesta análise foram considerados fatores como: **Investimento**, **economia de energia elétrica**, **conforto térmico** e **interferências nas Edificações**.

Como **resultado** do estudo foi escolhida a solução e **Sistemas VRF** para os prédios do Anexo I e Anexo II.

Definição de Escopo de Projeto

VRF Tipo Cassete

Forro Modular

Iluminação

Instalações Elétricas Instalações Lógicas e Telefônicas

Atuação Técnica

A reforma contou com a **atuação** das **Coordenadorias de Projetos**, **Obras** e **Manutenção** desde a fase de projeto até a execução.

Comissão de Fiscalização:

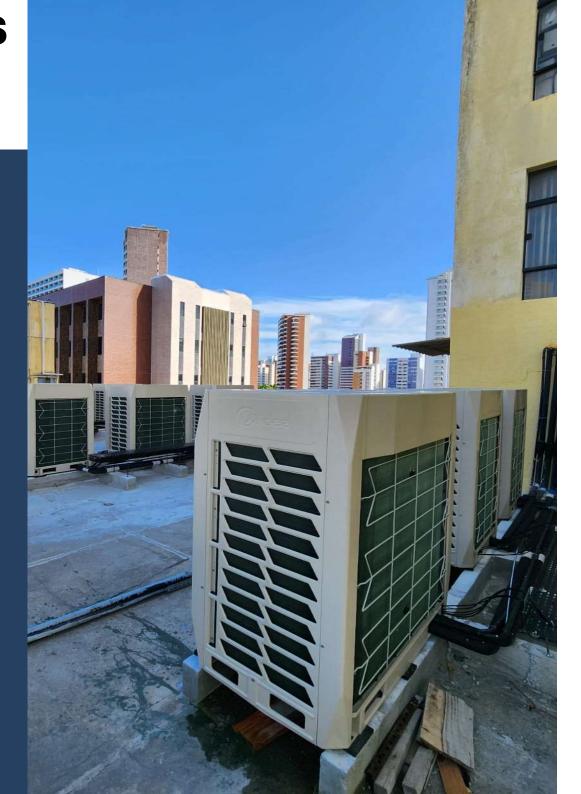
- Paulo Brasileiro Pires Freire CPO
- Adriano Duarte Vieira CPO
- André Luiz Firmino Gonzaga CMANUT

Resumo dos Custos de Obra

Valor de referência licitação:

R\$ 8.694.021,87

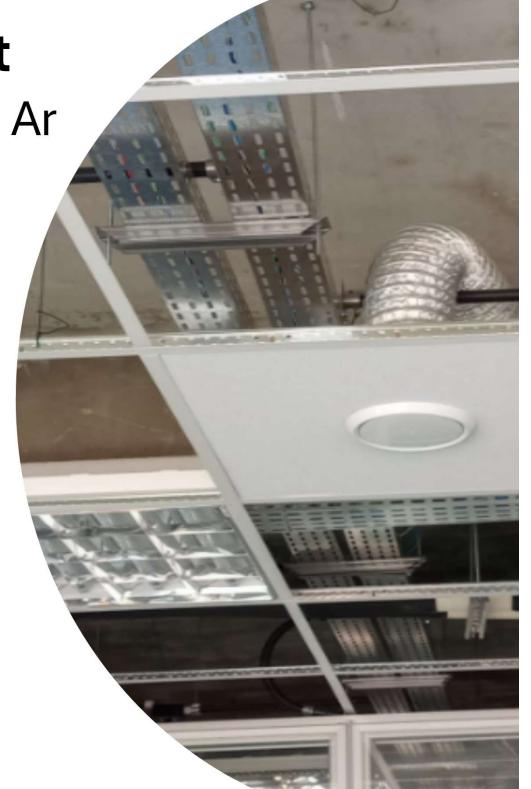
Valor final contratado:


R\$ 6.997.206,30

Valor exclusivo refrigeração:

R\$ 5.094.835,69

Retorno do investimento


(Energia Elétrica): 09 anos

Melhoria na Qualidade do Ar

 Sistema de renovação capta e filtra ar externo, reduzindo a concentração de CO2 nos ambientes internos.

 Melhora o bem-estar, saúde e desempenho dos colaboradores.

Iluminação e Acústica

- <u>Iluminação LED</u> com **luminárias eficientes e econômicas**
- Forros termoacústicos para redução de ruído

Resultados medidos

Iluminação LED – Anexo I

Melhoria de 75,2% na luminosidade dos ambientes contribuindo para maior conforto e produtividade

Andar	Iluminância Média (Lux) ANTES	Iluminância Média (Lux) DEPOIS	Incremento (%)
Mezanino	364	518	42,40%
1º Andar	260	512	97,10%
2º Andar	244	495	103%
3º Andar	283	442	55,90%
4º Andar	263	505	91,80%
5º Andar	267	474	77,70%
Média	280	491	75,20%

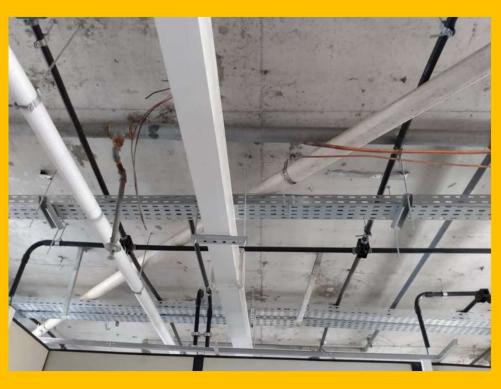
Resultados medidos

Iluminação LED – Anexo I

Incremento de ~144 % na luminosidade dos ambientes

Andar	Iluminância Média (Lux) ANTES	Iluminância Média (Lux) DEPOIS	Incremento (%)
Terreo	324	584	80,20%
1º Andar	253	589	132,30%
2º Andar	207	732	254%
3º Andar	403	733	81,90%
5º Andar	366	651	77,80%
6º Andar	240	735	206,00%
7º Andar	238	513	115,80%
8º Andar	250	579	131,40%
9º Andar	223	666	198,50%
10º Andar	218	717	229%
11º Andar	229	651	184,00%
12º Andar	223	595	167,00%
Média	265	645	143,90%

Segurança Elétrica


- Substituição de fiação, tomadas, dutos e calhas;
- Instalação de quadros com DR, DPS;
- Estruturas metálicas aterradas, conforme NBR 5410;
- Eliminação de fiações expostas sobre o forro;
- Identificação de circuitos e tomadas elétricas

Segurança Elétrica

Eliminação de fiações expostas sobre o forro

ANTES DEPOIS

Segurança Elétrica

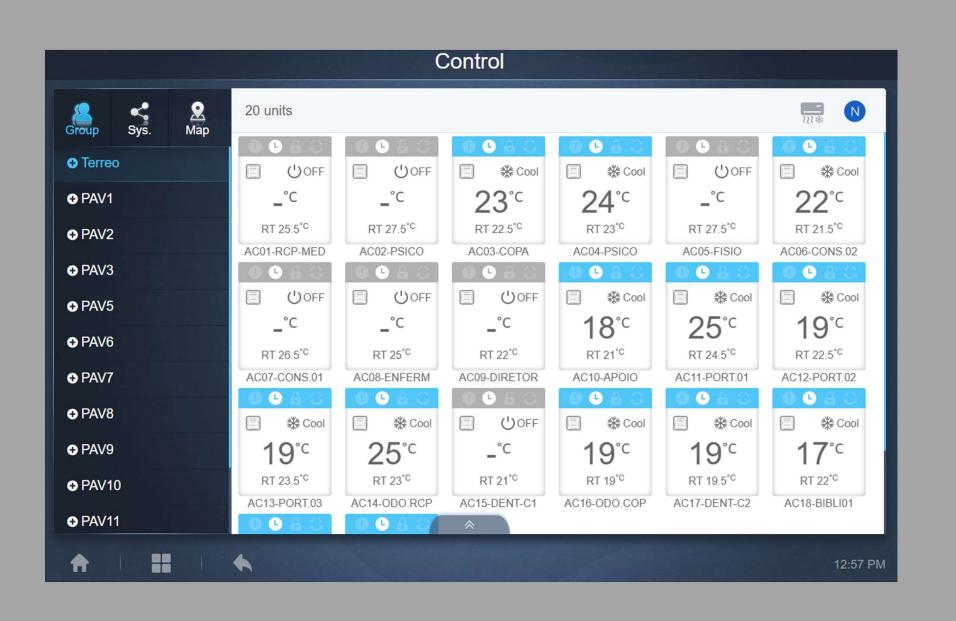
Eliminação de fiações expostas sobre o forro

ANTES DEPOIS

Segurança Elétrica

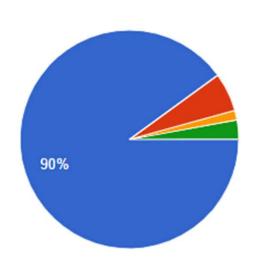
MODERNIZAÇÃO DE QUADROS ELÉTRICOS

ANTES DEPOIS

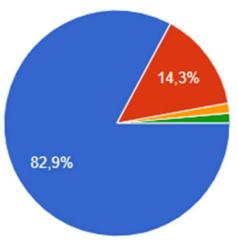


Automação – Desligamento programado

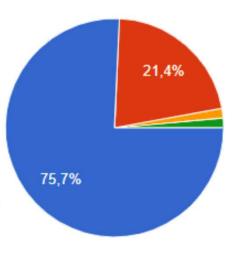
Automação


Pesquisa de Satisfação

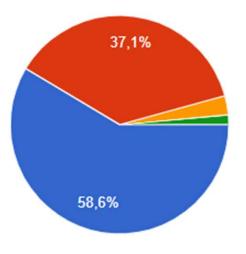
Usuários das Edificações


Conforto Térmico

90% Perceberam melhora 96% Satisfeitos

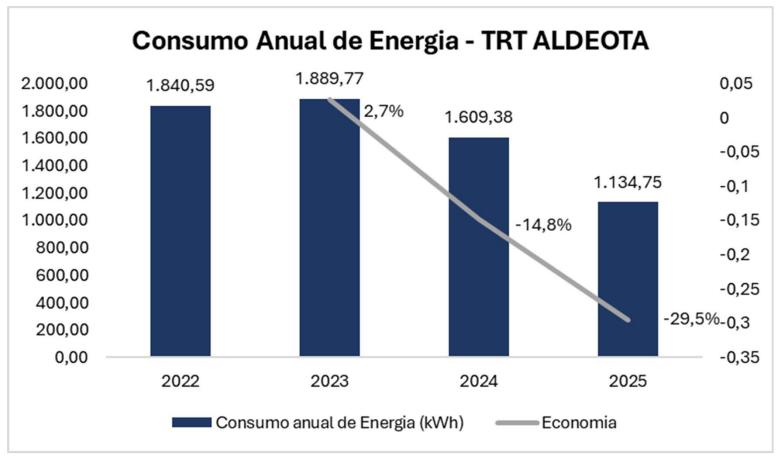

Iluminação

83% Perceberam melhora 97,2% Satisfeitos


Segurança das Instalações Elétricas

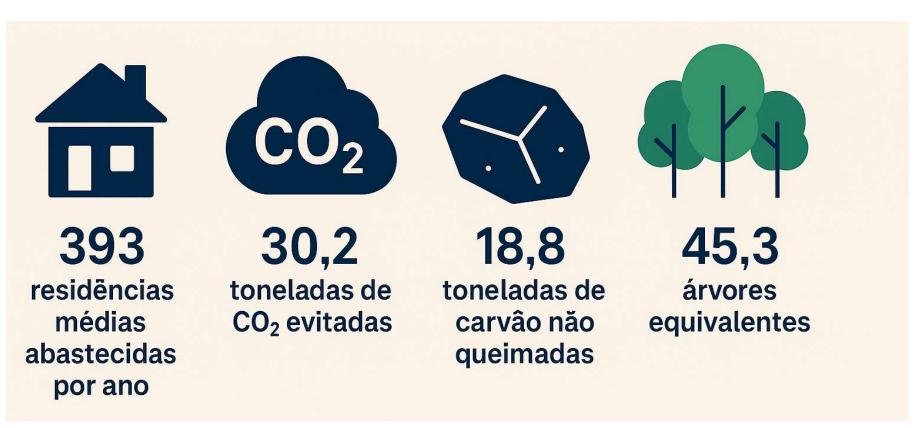
75,7% Perceberam melhora 97,1% Satisfeitos

Conforto Acústico


58,6% Perceberam melhora 95,7% Satisfeitos

Consumo Anual de Energia

TRT Aldeota

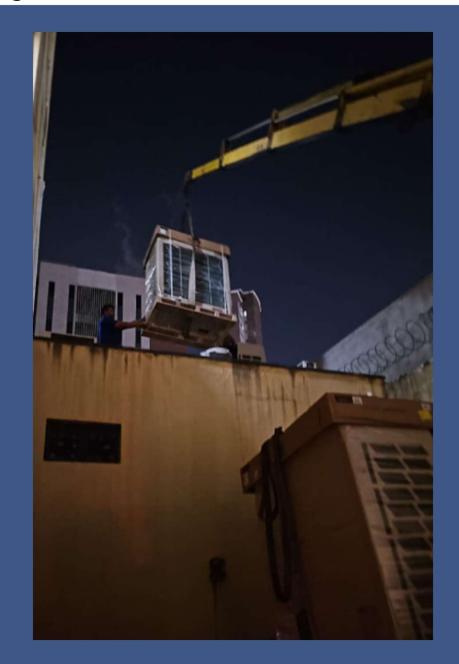


Eficiência Energética

Impacto Ambiental

E o que representam aos 755 MWh de Economia de Consumo Energético?

Fontes:

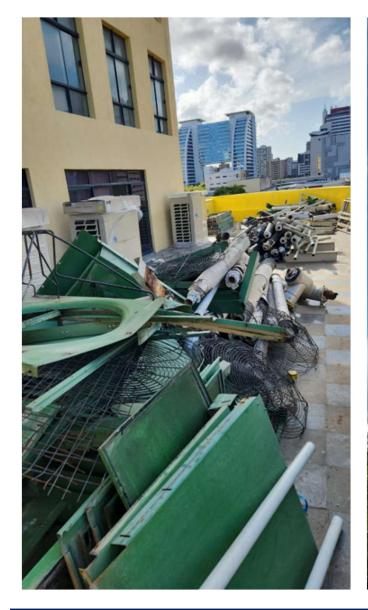

EPE – Nota Técnica nº 024/2020 - 40 kg de CO₂ por MWh

U.S. EPA Greenhouse Gas Equivalencies Calculator - 25 kg de carvão evitados por MWh

ONU/FAO, Instituto Akatu, e estimativas médias de sequestro de carbono - 0,06 árvores por MWh

Consumo médio anual: 160 kWh × 12 meses = 1,92 MWh/ano

Içamento de Unidades Condensadoras



Chegada das máquinas

Chiller Desmontado

Descarte de Material Reciclado

OBRIGADO